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Enzymes are appealing nanolithography tools due to their high DFr Spe

specificity and efficiency at catalyzing chemical reactions under WM Dﬁfﬁ,’%"fﬁ”mﬂﬂ
mild conditions in aqueous medium. Recent studies have demon-
strated the feasibility of using enzymes to create specific nanoscale
motifs in organic thin film surfacegDirecting and Confining the Figure 1. Schematic of the solid-supported DPPC/DLPC bilayer template.
enzyme reaction to defined regions of a surface remains, however,
the fundamental challenge in enzyme-promoted lithography. The
main strategy adopted to date is to use the direct-writing capability
of scanning probe microscopy and enzyme-modified or -coated
probes to direct the enzyme toward a desired location of a
homogeneous film surfacdé:d Alternative approaches that do not
require proximal probédo localize the enzymatic action must be
explored to evaluate the scope and versatility of enzyme lithography.
We have investigated the possibility of spatially directing a -
stereospecific lipolytic enzyme reaction using surface patterns of -
the biologically active and inactive enantiomers of the lipid g A A
substrate. We used phospholipasgRLA,), an interfacially active, 3 o A U W { W
calcium-dependent enzyme which catalyzes cleavage ofritze 0
ester linkage of glycerophospholipids, yielding fatty acid and
lysophospholipicd. The naturalL lipid form is hydrolyzed; PLA ¢
binds but does not cleave the physicochemically identidalm.3
Atomic force microscopy (AFM) studies of the degradation of one-
component, supported planar bilayers of solid-condensed
diacylphosphatidylcholines (di2Cs) have shown that enzymatic
hydrolysis starts at hole defects (i.e., exposed lipid cleavage sites),
and that PLA degrades both top and bottom layénd/e report
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a fluid DLPC matrix, were prepared by successive Langmuir O T egthiom)
Blodgett transfer _of two phase-separate_d DPPC/DLPC (1:3) mono- Figure 2. Tapping mode AFM images (18 10xm?) and height profiles
layers from the air/water interface to mica at a surface pressure of of mica-supported bilayers in aqueous medium. (A) In@@PPChL-

25 mN/m, as previously describ&dlhe resulting pattern results ~ DLPC. After PLAx-catalyzed lipid hydrolysis (38 "M PLAO.7 mM CaC},

from the superposition of the condensed DPPC stripe domains andPH ~ 8.8): (B)p-DPPCL-DLPC, (C)L-DPPCL-DLPC, and (D)p-DPPC/
fluid DLPC phases present in both layers (Figure 1), as revealed °-"PLPC (inset: 1.8x 0.9 um” magnification).

by detergent extraction of the fluid phase from these filiasd

visualized by near-field scanning optical microscbp$tructural originating from phospholipid desorption to the air/water interface
characterization of the striped bilayer and its formation mechanism during transfer of the second monolajeare present in the
have been reported elsewhéiBy using combinations of the, b, surrounding fluid DLPC phase (hole depth4 nm) and along the

andoL (racemic) forms of DPPC and DLPC, we have generated edges of the DPPC stripésThese striped bilayers are excellent
novel membrane templates wibhilt-in stereochemical control over  spatial patterns to test the lithographic performance of Ptlde

the PLA; activity. to their regularity, biomimetic interlayer coupling, length scale, and
Each of the enantiomer combinations exhibited the same bilayer the presence of hole defects and domain boundaries that are known
pattern structure as the one shown in Figure 2AdddPPCpL- enzyme activation sités

DLPC. Parallel stripes of a thicker DPPC phase are observed; these Figure 2B shows a-DPPCL-DLPC bilayer after PLA-catalyzed
are~1.1 nm higher than the surrounding matfiand occupy 18 phospholipid hydrolysis. PLAdegrades the-DLPC matrix but
=+ 5% of the total surface area. Regions of narrower broken stripes not thep-DPPC striped? The stripes are now an average-o4.7
(width ~ 130-190 nm) are dispersed among areas of wider nm higher than the surrounding phase, which consists predominantly
continuous lines (widthe 200-300 nm)>7 Bilayer-deep holes, of insoluble aggregates of the hydrolysis proddétsd The non-
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Figure 3. Tapping mode AFM images (5 2.5 um?) of the PLA
hydrolysis ofL.-DPPCbHL-DLPC. (A) Intact bilayer. (B) 1.43 min, (C) 4.29
min, (D) 7.15 min, (E) 12.87 min, and (F) 21.45 min after RBladdition

to the fluid cell (38 nM PLA, 0.7 mM CaC}, pH ~ 8.8). Times specified
correspond to the middle of each image. Arrows: holes in the fluid DLPC
(red) and condensed DPPC (blue) phases.

hydrolyzed stripes (widthix 110-175 nm) exhibit curved edges

due to the numerous holes that decorate the stripe edges in the

intact bilayer. Circular domains, 520 nm in diameter and of

bilayer. PLA was added to the AFM fluid cell at the top of Figure
3B. Significant bilayer degradation is observed within the time
frame (2.86 min) of the first image (Figure 3B). PLAimulta-
neously attacks the holes in the condensed DPPC stripes and fluid
DLPC matrix (arrows), despite the presencepofsomer in the
DLPC phase. Numerous channels extend from the widening holes
as the enzyme forges across the lipid bilayer (Figure-B*a.
Degradation of the more ordered DPPC stripes appears to proceed
more slowly than the fluid DLPC phase (Figure 3B). When
L-DLPC was used instead of-DLPC, hydrolysis of the fluid phase
proceeded too rapidly to be followed by AFMAfter a time lapse
of ~23 min (Figure 3F), the condensedPPC stripes are almost
completely degraded by the enzyme, while the surrounding fluid
pL-DLPC phase is only partly hydrolyzé&Although we have used
the commercially availableL-DLPC, the results indicate that for
D-DLPC, parallel grooves in a DLPC hilayer would be obtained
after hydrolysis of.-DPPCpH-DLPC12

In summary, we have demonstrated a proof-of-concept of the
selective enzymatic modification of stereochemically differentiated
lipid bilayers. Compared to proximal probe-directed enzyme
lithography, the stereochemically directed enzyme lithography
reported here allows the parallel patterning of large surface areas.
Given that many enzymes are stereospecific, stereoselective
enzymatic transformations (subtractive or additive) are potentially
useful tools to structure biomimetic films.
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interstripe phase. These nanoscopic structures, whose presence
revealed by PLAhydrolysis of the surroundingDLPC, are likely
D-DPPC domains that fail to associate or align into stripes at the
three phase contact line during film transfeand, therefore, remain

in the fluid DLPC matrix.

To establish that the selective hydrolysis of the DLPC matrix of
pD-DPPCL-DLPC is due to the stereospecific enzyme activity, rather
than the different phase statesf the DPPC stripes versus the
DLPC matrix, L.-DPPCL-DLPC andp-DPPCbHL-DLPC bilayers
were also treated with PLA? TheL-DPPCL-DLPC stripe pattern
(Figure 2C) is completely degraded by Pi.Aonly product

is
Supporting Information Available: Materials and Methods. This
material is available free of charge via the Internet at http://pubs.acs.org.
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